
The LogLuv Encoding for Full Gamut,

High Dynamic Range Images

Gregory Ward Larson
Silicon Graphics, Inc.

Mountain View, California

Abstract
The human eye can accommodate luminance in a single
view over a range of about 10,000:1 and is capable of
distinguishing about 10,000 colors at a given brightness. By
comparison, typical computer monitors have a luminance
range less than 100:1 and cover about half of the visible
color gamut. Despite this difference, most digital image
formats are geared to the capabilities of conventional
displays, rather than the characteristics of human vision. In
this paper, we propose a compact encoding suitable for the
transfer, manipulation, and storage of high dynamic range
color images. This format is a replacement for conventional
RGB images, and encodes color pixels as log luminance
values and CIE (u',v') chromaticity coordinates. We have
implemented and distributed this encoding as part of the
standard TIFF I/O library available by anonymous ftp. After
explaining our encoding, we describe its use within TIFF
and present some techniques for handling high dynamic
range pixels, and demonstrate with an example image.

1. Introduction

Recently, there has been increased interest in high
dynamic range (HDR) images, both captured and synthetic
[Debevec 97] [Ward 94], which permit extended processing
and higher fidelity display methods [Debevec 98]
[Larson 97] [Pattanaik 98]. Conventional 24-bit RGB
formats cannot encode this additional information, and
simple floating point extensions require too much storage
space. Some formats, used in the digital film industry,
extend the dynamic range slightly using a logarithmic RGB
space. Pixar has been using a 33-bit/pixel log format for
years, which covers 3.5 orders of magnitude with 0.4%
accuracy. Cineon has a 30-bit/pixel log format, but it only
covers about 2 orders of magnitude, depending on the type
of film being scanned. Another solution, employed in the
Radiance rendering system, is to append 8 bits to each pixel
to represent a common exponent for three 8-bit RGB
mantissas [Ward 91]. This provides over 77 orders of
magnitude in dynamic range, and works well for the
majority of images, but can produce visible quantization
artifacts and gamut clamping for some highly saturated

colors. This is due to the imperfect separation of luminance
and chrominance, and the limited gamut of a non-negative
RGB color space.

In this paper, we present a new pixel encoding that uses
a log representation of luminance and a CIE (u’,v’)
representation of chrominance.* We call this a LogLuv
encoding. This encoding has the following desirable
properties. It:

• Covers the entire visible color gamut.

• Covers the full range of perceivable luminances (over
38 orders of magnitude).

• Uses imperceptible step sizes in a perceptually
uniform space.

• May be calibrated to absolute luminance and color.

• Enables optimal visual fidelity on any output device.

In addition to these inherent features, we have the
following technical goals for our format. We would like it
to be:

• Compact.

• Compressible.

• Easy to convert to XYZ and RGB formats.

• Incorporated into the TIFF standard.

In this paper, we describe our LogLuv pixel encoding
method, followed by a description of our extension to Sam
Leffler’s free TIFF library. We then discuss some practical
considerations, and give an example application to HDR
tone mapping, ending with a brief conclusion.

2. Encoding Method

We have actually implemented two LogLuv pixel encodings,
a 24-bit encoding and a 32-bit encoding. The 24-bit
encoding breaks down into a 10-bit log luminance portion
and a 14-bit, indexed uv coordinate mapping. The 32-bit

*Chrominance is the quantity equivalent to hue plus
saturation. We follow conventional CIE usage by using
“color” and “chrominance” interchangeably, though the
latter is properly a subset of the former [Wyszecki82].

encoding uses 16 bits for luminance and 8 bits each for u’
and v’. Compared to the 24-bit encoding, the 32-bit version
provides greater dynamic range and precision at the cost of
an extra byte per pixel. Also, the 32-bit format is simpler
and compresses better, such that most 32-bit LogLuv images
end up smaller than their 24-bit counterparts. Therefore, we
will not discuss the 24-bit encoding in this article, but refer
the reader to the original paper for details [Larson 98].

2.1 32-bit LogLuv Pixel Encoding
The 32-bit LogLuv encoding uses 16 bits for luminance

information and 16 bits for chrominance. The MSB is used
to flag negative luminances, and the next 15 bits record up
to 38 orders of magnitude in 0.27% relative steps, covering
the full range of perceivable world luminances in
imperceptible steps. The lower two bytes encode u’ and v’,
respectively. The bit breakdown is shown in Fig. 1.

Le ue ve±

Figure 1. Bit allocation for 32-bit pixel encoding. MSB is a sign
bit, and the next 15 bits are used for a log luminance encoding.

The uv coordinates are separate 8-bit quantities.

The conversion to and from our log luminance encoding
is given in Eq. 1. The maximum luminance using this
encoding is 1.84×1019, and the smallest magnitude is
5.44×10-20. An Le value of 0 is taken to be exactly 0.0. The
sign bit is extracted before encoding and reapplied after the
conversion back to real luminance.

 L Ye = +256 642(log) (1a)

()[]Y Le= + −exp . /2 0 5 256 64 (1b)

Since the gamut of perceivable u and v values is
between 0 and 0.62, we chose a scale factor of 410 to go
between our [0,255] integer range and real coordinates, as
given in Eq. 2.

 u ue = 410 ' (2a)

 v ve = 410 ' (2b)

()u ue' . /= + 0 5 410 (2c)

()v ve' . /= + 0 5 410 (2d)

This encoding captures the full color gamut in 8 bits each
for ue and ve. There will be some unused codes outside the
visible gamut, but the tolerance this gives us of 0.0017 units
in uv space is already well below the visible threshold.
Conversions to and from 1931 CIE (x,y) chromaticities are
given in Eqs. 3 and 4.

u
x

x y
' =

− + +
4

2 12 3
(3a)

v
y

x y
' =

− + +
9

2 12 3
(3b)

x
u

u v
=

− +
9

6 16 12

'

' '
(4a)

y
v

u v
=

− +
4

6 16 12

'

' '
(4b)

where:
x = X/(X+Y+Z)
y = Y/(X+Y+Z)

3. TIFF Input/Output Library

The LogLuv encoding described has been embedded as a
new SGILOG compression type in Sam Leffler’s popular
TIFF I/O library. This library is freely distributed by
anonymous ftp at the site given at the end of this article.

When writing a high dynamic range TIFF image, the
LogLuv codec (compression/decompresson module) takes
floating point CIE XYZ scanlines and writes out 24-bit or
32-bit compressed LogLuv-encoded values. When reading
an HDR TIFF, the reverse conversion is performed to get
back floating point XYZ values. (We also provide a simple
conversion to 24-bit gamma-compressed RGB for the
convenience of readers that do not know how to handle
HDR pixels.)

An additional tag is provided for absolute luminance
calibration, named TIFFTAG_STONITS.* This is a single
floating point value that may be used to convert Y values
returned by the reader to absolute luminance in candelas per
square meter. This tag is set by the application that writes
out a HDR TIFF to permit prescaling of values to a
reasonable brightness range for display, where values of 1.0
will be displayed at the maximum output of the destination
device. This avoids the image reader having to figure out a
good exposure level for absolute luminances. If the input
data is uncalibrated (i.e., the absolute luminances are
unknown), then there is no need to store this tag, whether the
values are scaled or not.

3.1 Run-length Compression
By separating the bytes into four streams on each

scanline, the 32-bit encoding can be efficiently compressed
using an adaptive run-length encoding scheme
[Glassner 91]. Since the top byte containing the sign bit and
upper 7 log luminance bits changes very slowly, this byte-
stream submits very well to run-length encoding. Likewise,
the encoded ue and ve byte-streams compress well over areas
of constant chrominance.

* STONITS stands for “samples to Nits,” where “Nits” is the
photometric unit for luminance, also written
candelas/meter2. Use of this tag will be discussed later in
section 5.2.

3.2 Grayscale Images
For maximum flexibility, a pure luminance mode is also

provided by the codec, which stores and retrieves run-length
encoded 16-bit log luminance values using the same scheme
as applied in the 32-bit LogLuv encoding. There is no real
space savings over a straight 32-bit encoding, since the ue

and ve byte-streams compress to practically nothing for
grayscale data, but this option provides an explicit way to
specify floating point luminance images for TIFF readers
that care.

3.3 Raw I/O
It is also possible to decode the raw 32-bit LogLuv data

retrieved from an HDR TIFF directly, and this has some
advantages for implementing fast tone mapping and display
algorithms. For the 32-bit format, one can simply multiply
the output of a 32 Kentry Le table and a 64 Kentry uv table
to get a tone-mapped and gamma-compressed RGB result,
provided the tone mapping algorithm can separate
chrominance from luminance. A explanation of how this is
done is given in Section 5.1.

3.4 Example TIFF Code and Images
Use of the LogLuv encoding is demonstrated and sample
images are provided on our web site, which is given at the
end of this article. A converter has been written to and from
the Radiance floating point picture format [Ward 94]
[Ward 91], and serves as an example of LogLuv codec
usage. The web site itself also offers programming tips and
example code segments.

Example TIFF images using the 32-bit LogLuv and
16-bit LogL encoding are provided on the web site. These
images are either scanned from photographic negatives or
rendered using Radiance and converted to the new TIFF
format. Some images are rendered as 360° QuickTime VR
panoramas suitable for experiments in HDR virtual reality.

4. Practical Considerations

There are several important considerations in applying the
LogLuv image format, which we describe in this section.
Issues such as conversion to and from RGB space require
thought about dynamic range and gamut limitations, and
calibrated versus uncalibrated color spaces. We also discuss
speed and space efficiency issues, and appropriate filtering
and image manipulation techniques.

4.1 Converting from RGB to XYZ
Ideally, the original image data is available in a real,

XYZ color space or a spectrally sampled color space that
can be converted to XYZ using standard CIE techniques
[Wyszecki 82]. However, most imaging devices and
renderers are based on some RGB standard. To get from
RGB into XYZ space, a simple 3×3 matrix transformation
may be computed from the CIE (x,y) chromaticities for the
three RGB primaries and a white point [Rogers 85]. Using
the standard CCIR 709 RGB primaries for computer
displays and a neutral white point for optimal color balance,
we derive the color transformation shown in Eq. 5.

R G B
x 0.640 0.300 0.150
y 0.330 0.600 0.060

Table 1. CIE (x,y) chromaticities for CCIR 709 RGB primaries.

X

Y

Z

R

G

B

=

0 497 0 339 0164

0 256 0 678 0 066

0 023 0113 0 864

. . .

. . .

. . .

(5)

4.2 Luminance Calibration
If the image corresponds to a luminous scene (as

opposed to a painting or other reflective media), it may be
possible to calibrate the recorded information using the
TIFFTAG_STONITS field mentioned earlier. This is a real
multiplier that is stored with the image by whoever creates
it. When reading an image, an application can retrieve this
value and multiply it by each pixel’s Y value to get an
absolute luminance in cd/m2. If the absolute luminance for a
given pixel or subimage is known by the TIFF writer, this
multiplier is also known, since it equals the absolute
luminance divided by the output Y value. If, on the other
hand, we are working from a scan of a photographic
negative or transparency, it may be possible to approximate
this multiplier from the image exposure time, f-stop and film
speed. For 35mm photography, we can use the formula
given in Eq. 6, borrowed from the IES Handbook [IES 93].

m
S

f t= ⋅
200 2

π
(6)

where:
 S = film speed (ISO ASA)
f = aperture (f-stop)
t = exposure time (seconds)

Eq. 6 assumes that the maximum image brightness
corresponds to a Y value of 1.0. For photographic
negatives, which hold about 2 orders of magnitude of
extended dynamic range beyond white, we assume this
“maximum” corresponds to a density of about 1.5 (3%
negative transmittance).

4.3 Converting back to RGB
For the reverse conversion, we invert the matrix from

Eq. 5 as shown in Eq. 7.

R

G

B

X

Y

Z

=
− −

−
−

2 690 1276 0 414

1022 1978 0 044

0 061 0 224 1163

. . .

. . .

. . .

(7)

Since some of the matrix coefficients are negative due to the
larger gamut of the imaginary CIE primaries, the formula
given in Eq. 7 may result in negative RGB values for some
highly saturated colors. If the image processing software
can cope with negative values, it is better to leave them that
way, otherwise a gamut mapping operation may be
performed to bring them back into the legal range. Much

research has been devoted to this problem [Stone 88], but
clamping is the most often applied solution. We have also
found desaturating to a face of the RGB cube to be a simple
and effective solution to limiting the color gamut.

If floating point RGB colors are maintained without
gamut limiting (i.e., negative values allowed), it is possible
to go from LogLuv→RGB→LogLuv without losing data.
However, the opposite is not true, since the LogLuv
encoding quantizes data into perceptual bins. Even in the
case of integer RGB data, there will be some differences due
to the binning used by the two encodings.

4.4 RGB→→LogLuv→→RGB Information Loss
Even though the gamut and dynamic range of the 32-bit

LogLuv format is superior to that of 24-bit RGB, we will not
get the exact pixel values again if we go through this format
and back to RGB. This is because the quantization size of a
LogLuv pixel is matched to human perception, whereas
24-bit RGB is not. In places where human error tolerance is
greater, the LogLuv encoding will have larger quantization
volumes than RGB and therefore may not reproduce exactly
the same 24-bit values when going back and forth. Over
most of the gamut, the LogLuv tolerances will be tighter,
and RGB will represent lower resolution information. (This
is especially true for dark areas.) In other words, the losses
incurred going through the LogLuv format may be
measurable in absolute terms, but they should not be visible
to a human observer since they are below the threshold of
perception.

We performed two tests to study the effects of going
between RGB and LogLuv formats, one quantitative test and
one qualitative test. In the quantitative test, we went through
all 16.7 million 24-bit RGB colors and converted to 32-bit
LogLuv and back, then measured the difference between the
input and output RGB colors using the CIE E* perceptual
error metric. We found that 17% of the colors were
translated exactly, 80% were below the detectable threshold
and 99.75% were less than twice the threshold, where
differences may become noticeable. In our qualitative test,
we examined a dozen or so images from different sources,
performing the RGB→LogLuv→RGB mapping in
interleaved 16 scan-line stripes that roughly corresponded to
the maximum visible angular frequency. In this way, we
hoped to notice the underlying pattern in cases where the
translation resulted in visible differences. In all of the
captured images we looked at, the details present completely
obscured any differences caused by the translation, even in
sky regions that were relatively smooth. Only in one
synthesized image, which we designed very carefully to have
smooth gradients for our tests, were we just barely able to
discern the pattern in large, low detail regions. Even so, we
had to really be looking for it to see it, and it sort of faded in
and out, as if the eye could not decide if it was really there
or not.

From these tests, we concluded that the differences
caused by taking RGB data through the LogLuv format will
not be visible in side-by-side comparisons.

4.5 LogLuv Image Compression
The simple adaptive run-length encoding scheme used

to compress our 32-bit/pixel LogLuv format performs about
as well on average as the LZW scheme used on standard

TIFF RGB images. Since luminance and chrominance are
placed in separate byte streams, regions where one or the
other are relatively constant compress very well. This is
often the case in computer graphics imagery, which will
compress between 15% and 60% for reasonably complex
scenes, and will often outperform LZW compression so
much that the resulting file size is actually smaller than the
LZW-compressed 24-bit RGB version. For scanned
imagery, the performance is usually not as good using run-
length encoding due to the increased complexity and image
noise. However, we never grow the data, as can happen
with the LZW compression algorithm, which is sometimes
worse than no compression at all.

For example, compression performance for the scene
shown in Fig. 2 is -8% for LZW compression, compared to
13% for our run-length encoding. The LZW file still ends
up slightly smaller since it is starting from 24-bit pixels, but
our compressed result has an additional advantage, which is
lower entropy. Specifically, we can apply an entropy
encoding scheme to our run-length encoded result, and pick
up some additional savings. For the same figure, applying
the gzip program to the result gains an additional 17%
compression, making the resulting file smaller than the
straight LZW encoding. (Applying gzip to the LZW file
only reduces its size by 4%, which is not enough to make up
the difference.) In most cases, applying gzip to our run-
length encoded 32-bit LogLuv TIFF yields a file that is
within a 10% of a gzip’ped 24-bit RGB file, which is almost
always smaller than TIFF’s blockwise LZW compression.

4.6 Image Processing
There are two basic approaches for processing LogLuv

encoded images. One method is to convert to a floating-
point RGB or XYZ color space and perform image
manipulations on these quantities. This is probably the
simplest and most convenient for general purposes. The
other method is to work directly in a separate luminance
space such as Yuv or Yxy. For certain types of image
processing, such as contrast and brightness adjustment, it
may actually be faster since we can work on the Y channel
alone, plus we save a little time on our conversions.

In general, it is not a good idea to convert to an
8-bit/primary integer space to manipulate high dynamic
range images, because the dynamic range is lost in the
process. However, since most existing hardware and
software is geared to work with 24-bit RGB data, it may be
easiest to use this format for interactive feedback, then apply
the manipulation sequence to the floating point data when
writing the file. Better still, one could use the approach
adopted by some software packages and store the sequence
of image processing commands together with the original
data. These commands may be recorded as additional TIFF
tags and attached to the file without even touching the data.
Besides saving time, this approach also preserves our
absolute luminance calibration, if TIFFTAG_STONITS is
present.

Compositing high dynamic range images using an alpha
channel is also possible, though one must consider the effect
of multiplying a floating point value by an integer value.
When one is small and the other is large, the result may
either be wrong or show severe quantization artifacts.
Therefore, it is best to use a high dynamic range alpha

channel, which may be stored as a separate 16-bit LogL
TIFF layer.

An additional benefit of the 32-bit LogLuv and 16-bit
LogL formats is that pixels may take on negative values,
which are useful for arbitrary image math and general
masking and filtering. For example, an image may be
broken into separate 2D Fourier frequency layers, which
when summed together yield back the original image. The
coefficients for these layers may then be tuned
independently or manipulated in arbitrary ways. This is
usually done in memory, such that the written file format
pays little part, but being able to write out the intermediate
pixel data without losing information has potential
advantages for subsequent processing.

5. Motivating Application: Tone Mapping

Tone mapping is the process of mapping captured
image values to displayed or printed colors [Tumblin93].
With the added dynamic range and gamut provided by our
new encoding, we can get a much better mapping than we
could with the limited range of conventional digital images.
If our data is also calibrated (i.e., STONITS has been set by
the creating application), then we can go further to simulate
visibility using what we know about human color and
contrast sensitivity. Recently, a number of tone mapping
techniques have been developed for images with high
dynamic range [Pattanaik 98] [Spencer 95] [Chiu 93]
[Jobson 97]. Most of these methods introduce image-
geometric dependencies, so they cannot be applied
independently to each pixel, or computed using integer
math. In this section, we present an efficient tone-mapping
technique for HDR images that can be applied on a pixel-by-
pixel basis using integer operations [Larson97].

5.1 Efficient Tone Mapping
As we mentioned earlier in Section 3.3, we can go

directly from the luminance and uv image data to an RGB
tone-mapped result by multiplying the output of two lookup
tables. To get the math to work out right, both the
luminance and uv table values must be in the monitor’s
gamma-compressed space, and the RGB values must be
premultiplied by their corresponding luminance coefficients.
The computation for luminance and RGB table entries
corresponding to specific tone-mapped display colors is
given in Eq. 8.

 L L L Lt e d e() () /= 256 1 γ
(8a)

()R C S R Ct e r e() ()
/

=

256 1

1 γ
(8b)

()G C S G Ct e g e() ()
/

=

256 1

1 γ
(8c)

()B C S B Ct e b e() ()
/

=

256 1

1 γ
(8d)

where:
Lt, Rt, Gt, Bt = lookup table values
Le = encoded log luminance
Ce = encoded uv color
Ld(Le) = mapped display luminance
R1, G1, B1 = normalized color mapping
 γ = monitor response gamma
Sr, Sg, Sb = red, green, blue coefficients
from middle row of Eq. 5 matrix
 Sr⋅R1(Ce) + Sg⋅G1(Ce) + Sb⋅B1(Ce) = 1

The color coefficients guarantee that all tabulated
chrominance values will be between 0 and 255. To get from
the separately tabulated luminance and chrominance to
display values in the 0-255 range, we apply the formulas
given in Eq. 9.

 R L L R C Sd t e t e r= () () / /256 1 γ
(9a)

 G L L G C Sd t e t e g= () () / /256 1 γ
(9b)

 B L L B C Sd t e t e b= () () / /256 1 γ
(9c)

Since the denominators in Eq. 9 are constant, they can be
precomputed, leaving only four table lookups, three integer
multiplies and three integer divides to map each pixel.

We have implemented this type of integer-math tone-
mapping algorithm in an HDR image viewer, and it takes
less than a second to convert and display a 512×512 picture
on a 180 MHz processor. The Le table size is determined by
the range of luminances present in the image, and only the
colors needed are actually translated to RGB and stored in
the uv lookup table. We used the high dynamic range
operator described in [Larson 97], which requires a
modification to our algorithm to include mesopic color
correction, since it relates the luminance and color
mappings. For pixels below the upper mesopic limit, we
determine the color shift in uv coordinates, then do our table
lookup on the result.

5.2 Example Results
Fig. 2a shows a scanned photograph as it might appear on a
PhotoCD using a YCC encoding. Since YCC can capture
up to “200% reflectance,” we can apply a tone mapping
operator to bring this extra dynamic range into our print, as
shown in Fig. 3a. However, since many parts of the image
were brighter than this 200% value, we still lose much of the
sky and circumsolar region, and even the lighter asphalt in
the foreground. In Fig. 2b, we see where 35% of the
original pixels are outside the gamut of a YCC encoding.

Figure 2. The left image (a) shows a PhotoYCC encoding of a
color photograph tone-mapped with a linear operator. The right

image (b) shows the out-of-gamut regions. Red areas are too
bright or too dim, and green areas have inaccurate color.

Fig. 3b shows the same color negative scanned into our
32-bit/pixel high dynamic range TIFF format and tone
mapped using a histogram compression technique
[Larson 97]. Fig. 4c shows the same HDR TIFF remapped
using the perceptual model of Pattanaik et al [Pattanaik 98].
Figs. 4a and 4b show details of light and dark areas of the
HDR image whose exposure has been adjusted to show the
detail captured in the original negative. Without an HDR
encoding, this information would be lost.

 .

Figure 3. The left image(a) shows the YCC encoding after
remapping with a histogram compression tone operator.

Unfortunately, since YCC has so little dynamic range, most of the
bright areas are lost. The right image (b) shows the same

operator applied to a 32-bit HDR TIFF encoding, showing the full
dynamic range of the negative.

Figure 4. The upper-left image (a) shows the circumsolar region
reduced by 4 f-stops to show the image detail recorded on the

negative. The lower-left image (b) shows house details boosted by
3 f-stops. The right image (c) shows our HDR TIFF mapped with

the Pattanaik-Ferwerda tone operator.

5.3 Discussion and Other Applications
It is clear from our example that current methods for

tone-mapping HDR imagery, although better than a simple
S-curve, are less than perfect. It would therefore be a
mistake to store an image that has been irreversibly tone
mapped in this fashion, as some film scanner software
attempts to do. Storing an HDR image allows us to take full
advantage of future improvements in tone mapping and
display algorithms, at a nominal cost.

Besides professional film and photography, there are a
number of application areas where HDR images are key.
One is lighting simulation, where designers need to see an
interior or exterior space as it would really appear, and
evaluate things in terms of absolute luminance and
illuminance levels. Since an HDR image can store the real
luminance in its full-gamut coverage, this information is
readily accessible to the designer. Another application is
image-based rendering, where a user is allowed to move
about in a scene by warping captured or rendered images
[Debevec 96]. If these images have limited dynamic range,
it is next to impossible to adapt the exposure based on the
current view, and impossible to use the image data for local
lighting. Using HDR pixels, a natural view can be provided
for any portion of the scene, and the images may also be
used to illuminate local objects [Debevec 98]. A fourth
application area is digital archiving, where we are making a
high-quality facsimile of a work of art for posterity. In this
case, the pixels we record are precious, so we want to make
sure they contain as much information as possible. At the
same time, we have concerns about storage space and
transmission costs, so keeping this data as compact as
possible is important. Since our HDR format requires little
more space than a standard 24-bit encoding to capture the
full visible gamut, it is a clear winner for archiving
applications.

Our essential argument is that we can make better use of
the bits in each pixel by adopting a perceptual encoding of
color and brightness. Although we don’t know how a given
image might be used or displayed in the future, we do know
something about what a human can observe in a given scene.

By faithfully recording this information, we ensure that our
image will take full advantage of any future improvements in
imaging technology, and our basic format will continue to
find new uses.

6. Conclusion

We have presented a new method for encoding high
dynamic range digital images using log luminance and uv
chromaticity to capture the entire visible range of color and
brightness. The proposed format requires little additional
storage per pixel, while providing significant benefits to
suppliers, caretakers and consumers of digital imagery.

This format is most appropriate for recording the output
of computer graphics rendering systems and images
captured from film, scanners and digital photography.
Virtually any image meant for human consumption may be
better represented with a perceptual encoding. Such
encodings are less appropriate when we either wish to store
non-visual (or extravisual) information as found in satellite
imagery, or output to a specific device with known
characteristics such as NTSC or PAL video.

Through the use of re-exposure and dynamic range
compression, we have been able to show some of the
benefits of HDR imagery. However, it is more difficult to
illustrate the benefits of a larger color gamut without
carefully comparing hard copy output of various multi-ink
printers. Also, since we currently lack the ability to capture
highly saturated scenes, our examples would have to be
contrived from individual spectral measurements and
hypothetical scenes. We therefore leave gamut validation as
a future exercise.

Future work on the format itself should focus on the
application of lossy compression methods for HDR images
and animations. A JPEG-like cosine transform should work
very well, since LogLuv looks almost the same perceptually
as the gamma-compressed YCbCr coordinates that JPEG
uses. Efficient compression is needed for broad acceptance
of HDR imagery and extensions for digital cinema.

7. Acknowledgments

The author would like to thank Sam Leffler for his help and
cooperation in adding these routines to the TIFF i/o library,
Dan Baum for his support and encouragement, Paul
Haeberli, Christopher Walker and Sabine Susstrunk for their
advice, and Alexander Wilkie, Philippe Bekaert and Jack
Tumblin for testing the software. Finally, thanks to Ronen
Barzel for his many helpful comments and suggestions on
the paper itself.

8. References

[Chiu 93]K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang and K.
Zimmerman “Spatially nonuniform scaling functions for
high contrast images,” Proceedings of Graphics Interface
'93, Toronto, Canada, (May 1993).

[Debevec 98] Paul Debevec, “Rendering Synthetic Objects
into Real Scenes: Bridging Traditional and Image-Based
Graphics with Global Illumination and High Dynamic

Range Photography,” Computer Graphics (Proceedings of
ACM Siggraph 98).

[Debevec 97] Paul Debevec, Jitendra Malik, “Recovering
High Dynamic Range Radiance Maps from Photographs,”
Computer Graphics (Proceedings of ACM Siggraph 97).

[Debevec 96] Paul Debevec, Camillo Taylor, Jitendra Malik,
“Modeling and Rendering Architecture from Photographs:
A hybrid geometry- and image-based approach,” Computer
Graphics (Proceedings of ACM Siggraph 96).

[Glassner 91] Andrew Glassner, “Adaptive Run-Length
Encoding,” in Graphics Gems II, edited by James Arvo,
Academic Press, (1991).

[IES 93] Illuminating Engineering Society of North America, IES
Lighting Handbook, Reference Volume, IESNA (1993).

[Jobson 97] Daniel Jobson, Zia-ur Rahman, and Glenn A.
Woodell. “Properties and Performance of a
Center/Surround Retinex,” IEEE Transactions on Image
Processing, Vol. 6, No. 3 (March 1997).

[Larson 98] Greg Larson, “Overcoming Gamut and
Dynamic Range Limitations in Digital Images,” Color
Imaging Conference, Scottsdale, Arizona (1998).

[Larson 97] Greg Larson, Holly Rushmeier, Christine
Piatko, “A Visibility Matching Tone Reproduction
Operator for High Dynamic Range Scenes,” IEEE
Transactions on Visualization and Computer Graphics, 3,
4, (1997).

[Pattanaik 98] Sumant Pattanaik, James Ferwerda, Mark
Fairchild, Don Greenberg, “A Multiscale Model of
Adaptation and Spatial Vision for Realistic Image
Display,” Computer Graphics (Proceedings of Siggraph
98).

[Rogers 85] David Rogers, Procedural Elements for
Computer Graphics, McGraw-Hill, (1985).

[Spencer 95] G. Spencer, P. Shirley, K. Zimmerman, and D.
Greenberg, “Physically-based glare effects for computer
generated images,” Computer Graphics (Proceedings of
Siggraph 95).

[Stone 88] Maureen Stone, William Cowan, John Beatty,
“Color Gamut Mapping and the Printing of Digital Color
Images,” ACM Transactions on Graphics, 7(3):249-292,
(October 1988).

[Tumblin93] Tumblin, Jack and Holly Rushmeier. “Tone
Reproduction for Realistic Images,” IEEE Computer
Graphics and Applications, November 1993, 13(6).

[Ward 94] Greg Ward, “The RADIANCE Lighting
Simulation and Rendering System,” Computer Graphics
(Proceedings of Siggraph 94).

[Ward 91] Greg Ward, “Real Pixels,” in Graphics Gems
II, edited by James Arvo, Academic Press, (1991).

[Wyszecki 82] Gunter Wyszecki, W.S. Stiles, Color Science:
Concepts and Methods, Quantitative Data and Formulae,
Second Edition, Wiley, (1982).

9. Web Information

Links to Sam Leffler’s TIFF library, example LogLuv
images and other information may be found at:
http://www.acm.org/jgt/papers/Larson99
Greg may be reached by e-mail at gregl@sgi.com.

