
High Dynamic Range Imaging
Greg Ward

Exponent – Failure Analysis Assoc.
Menlo Park, California

Abstract

The ultimate in color reproduction is a display that can
produce arbitrary spectral content over a 300-800 nm range
with 1 arc-minute resolution in a full spherical hologram.
Although such displays will not be available until next year,
we already have the means to calculate this information
using physically-based rendering. We would therefore like
to know: how may we represent the results of our
calculation in a device-independent way, and how do we map
this information onto the displays we currently own? In
this paper, we give an example of how to calculate full
spectral radiance at a point and convert it to a reasonably
correct display color. We contrast this with the way
computer graphics is usually done, and show where
reproduction errors creep in. We then go on to explain
reasonable short-cuts that save time and storage space
without sacrificing accuracy, such as illuminant discounting
and human gamut color encodings. Finally, we demonstrate
a simple and efficient tone-mapping technique that matches
display visibility to the original scene.

Introduction

Most computer graphics software works in a 24-bit RGB
space, with 8-bits allotted to each of the three primaries in a
power-law encoding. The advantage of this representation is
that no tone-mapping is required to obtain a reasonable
reproduction on most commercial CRT display monitors,
especially if both the monitor and the software adhere to the
sRGB standard, i.e., CCIR-709 primaries and a 2.2 gamma
[1]. The disadvantage of this practice is that colors outside
the sRGB gamut cannot be represented, particularly values
that are either too dark or too bright, since the useful
dynamic range is only about 90:1, less than 2 orders of
magnitude. By contrast, human observers can readily
perceive detail in scenes that span 4-5 orders of magnitude in
luminance through local adaptation, and can adapt in
minutes to over 9 orders of magnitude. Furthermore, the
sRGB gamut only covers about half the perceivable colors,
missing large regions of blue-greens and violets, among
others. Therefore, although 24-bit RGB does a reasonable
job of representing what a CRT monitor can display, it does
a poor job representing what a human observer can see.

Display technology is evolving rapidly. Flat-screen
LCD displays are starting to replace CRT monitors in many
offices, and LED displays are just a few years off.
Micromirror projection systems with their superior dynamic

range and color gamut are already widespread, and laser raster
projectors are on the horizon. It is an important question
whether we will be able to take full advantage and adapt our
color models to these new devices, or will we be limited as
we are now to remapping sRGB to the new gamuts we have
available -- or worse, getting the colors wrong? Unless we
introduce new color models to our image sources and do it
soon, we will never get out of the CRT color cube.

The simplest solution to the gamut problem is to
adhere to a floating-point color space. As long as we permit
values greater than one and less than zero, any set of color
primaries may be linearly transformed into any other set of
color primaries without loss. The principal disadvantage of
most floating-point representations is that they take up too
much space (96-bits/pixel as opposed to 24). Although this
may be the best representation for color computations,
storing this information to disk or transferring it over the
internet is a problem. Fortunately, there are representations
based on human perception that are compact and sufficiently
accurate to reproduce any visible color in 32-bits/pixel or
less, and we will discuss some of these in this paper.

There are two principal methods for generating high
dynamic-range source imagery: physically-based rendering
(e.g., [2]), and multiple-exposure image capture (e.g., [3]).
In this paper, we will focus on the first method, since it is
most familiar to the author. It is our hope that in the
future, camera manufacturers will build HDR imaging
principles and techniques into their cameras, but for now,
the easiest path to full gamut imagery seems to be computer
graphics rendering.

Computer graphics lifts the usual constraints associated
with physical measurements, making floating-point color
the most natural medium in which to work. If a renderer is
physically-based, it will compute color values that
correspond to spectral radiance at each point in the rendered
image. These values may later be converted to displayable
colors, and the how and wherefore of this tone-mapping
operation is the main topic of this paper. Before we get to
tone-mapping, however, we must go over some of the
details of physically-based rendering, and what qualifies a
renderer in this category. Specifically, we will detail the
basic lighting calculation, and compare this to common
practice in computer graphics rendering. We highlight some
common assumptions and approximations, and describe
alternatives when these assumptions fail. Finally, we
demonstrate color and tone mapping methods for converting
the computed spectral radiance value to a displayable color at
each pixel.

The Spectral Rendering Equation

Ro(o,) = fr (o; i,) Ri(∫∫
i
,)cos i d i

(1)

The spectral rendering Eq. (1) expresses outgoing spectral
radiance Ro at a point on a surface in the direction o (o, o)
as a convolution of the bidirectional reflectance distribution
function (BRDF) with the incoming spectral radiance over
the projected hemisphere. This equation is the basis of
many physically-based rendering programs, and it already
contains a number of assumptions:

1. Light is reflected at the same wavelength at which
it is received; i.e., the surface is not
fluorescent.

2. Light is reflected at the same position at which it is
received; i.e., there is no subsurface scattering.

3. Surface transmission is zero.
4. There are no polarization effects.
5. There is no diffraction.
6. The surface does not spontaneously emit light.

In general, these assumptions are often wrong. Starting
with the first assumption, many modern materials such as
fabrics, paints, and even detergents, contain “whitening
agents” which are essentially phosphors added to absorb
ultraviolet rays and re-emit them at visible wavelengths.
The second assumption is violated by many natural and
man-made surfaces, such as marble, skin, and vinyl. The
third assumption works for opaque surfaces, but fails for
transparent and thin, translucent objects. The fourth
assumption fails for any surface with a specular (shiny)
component, and becomes particularly troublesome when
skylight (which is strongly polarized) or multiple reflections
are involved. The fifth assumption fails when surface
features are on the order of the wavelength of visible light,
and the sixth assumption is violated for light sources.

Each of these assumptions may be addressed and
remedied as necessary. Since a more general rendering
equation would require a long and tedious explanation, we
merely describe what to add to account for the effects listed.
To handle fluorescence, the outgoing radiance at wavelength
λo may be computed from an integral of incoming radiance
over all wavelengths λI, which may be discretized in a
matrix form [4]. To handle subsurface scattering, we can
integrate over the surface as well as incoming directions, or
use an approximation [5]. To handle transmission, we
simply integrate over the sphere instead of the hemisphere,
and take the absolute value of the cosine for the projected
area [2]. To account for polarization, we add two terms for
the transverse and parallel polarizations in each specular
direction [4] [6]. To handle diffraction, we fold interactions
between wavelength, polarization, amplitude and direction
into the BRDF and the aforementioned extensions [7].
Light sources are the simplest exception to handle – we
simply add in the appropriate amount of spontaneous
radiance output as a function of direction and wavelength.

Participating Media
Implicitly missing from Eq. (1) is the interaction of light
with the atmosphere, or participating media. If the space
between surfaces contains significant amounts of dust,
smoke, or condensation, a photon leaving one surface may
be scattered or absorbed along the way. An additional
equation is therefore needed to describe this volumetric
effect, since the rendering equation only addresses
interactions at surfaces.

dR(s)

ds
=− a R(s) − s R(s) +

s

4
Ri(i)P(i) d∫

(2)

Eq. (2) gives the differential change in radiance as a function
of distance along a path. The coefficients σa and σs give the
absorption and scattering densities respectively at position s,
which correspond to the probabilities that light will be
absorbed or scattered per unit of distance traveled. The
scattering phase function, P(i), gives the relative
probability that a ray will be scattered in from direction i at
this position. All of these functions and coefficients are
also a function of wavelength.

The above differential-integral equation is usually solved
numerically by stepping through each position along the
path, starting with the radiance leaving a surface given by
Eq. (1). Recursive iteration from a sphere of scattered
directions can quickly overwhelm such a calculation,
especially if it is extended to multiple scattering events.
Without going into details, Rushmeier et al. approached the
problem of globally participating media using a zonal
approach akin to radiosity that divides the scene into a finite
set of voxels whose interactions are characterized in a form-
factor matrix [8]. More recently, a modified ray-tracing
method called the photon map has been applied successfully
to this problem by Wann Jensen et al. [9]. In this method,
photons are tracked as they scatter and are stored in the
environment for later resampling during rendering .

Solving the Rendering Equation
Eq. (1) is a Fredholm integral equation of the second kind,
which comes close to the appropriate level of intimidation
but fails to explain why it is so difficult to solve in general
[10]. Essentially, the equation defines outgoing radiance as
an integral of incoming radiance at a surface point, and that
incoming radiance is in turn defined by the same integral
with different parameters evaluated at another surface point.
Thus, the surface geometry and material functions comprise
the boundary conditions of an infinitely recursive system of
integral equations. In some sense, it is remarkable that
researchers have made any progress in this area at all, but in
fact, there are many people in computer graphics who
believe that rendering is a solved problem.

For over fifteen years, three approaches have dominated
research and practice in rendering. The first approach is
usually referred to as the local illumination approximation,
and is the basis for most graphics rendering hardware, and

much of what you see in movies and games. In this
approximation, the integral equation is converted into a
simple sum over light sources (i.e., concentrated emitters)
and a general ambient term. The second approach is called
ray tracing, and as its name implies, this method traces
additional rays to determine specular reflection and
transmission, and may be used to account for more general
interreflections as well [11] [12]. The third approach is
called radiosity after the identical method used in radiative
transfer, where reflectances are approximated as Lambertian
and the surfaces are divided into patches to convert the
integral equation into a large linear system that may be
solved iteratively [13]. Comparing these three approaches,
local illumination is the cheapest and least accurate. Ray
tracing has the advantage of coping well with complex
geometry and materials, and radiosity does the best job of
computing global interactions in simpler, diffuse
environments.

In truth, none of the methods currently in use provides a
complete and accurate solution to the rendering equation for
general environments, though some come closer than others.
The first thing to recognize in computer graphics, and
computer simulation in general, is that the key to getting a
reasonable answer is finding the right approximation. The
reason that local illumination is so widely employed when
there are better techniques available is not simply that it’s
cheaper; it provides a reasonable approximation to much of
what we see. With a few added tricks, such as shadow maps,
reflection maps and ambient lights, local illumination in the
hands of an expert does a very credible job. However, this is
not to say that the results are correct or accurate. Even in
perceptual terms, the colors produced at each pixel are
usually quite different from those one would observe in a
real environment. In the entertainment industry, this may
not be a concern, but if the application is prediction or
virtual reenactment, better accuracy is necessary.

For the remainder of this paper, we assume that
accuracy is an important goal, particularly color accuracy.
We therefore restrict our discussion of rendering and display
to physically-based global illumination methods, such as
ray-tracing and radiosity.

Tone Mapping

By computing an approximate solution to Eq. (1) for a
given planar projection, we obtain a spectral rendering that
represents each image point in physical units of radiance per
wavelength (e.g., SI units of watts/steradian/meter2/nm).
Whether we arrive at this result by ray-tracing, radiosity, or
some combination, the next important task is to convert the
spectral radiances to pixel color values for display. If we fail
to take this step seriously, it almost doesn’t matter how
much effort we put into the rendering calculation – the
displayed image will look wrong.

Converting a spectral image to a display image is
usually accomplished in two stages. The first stage is to
convert the spectral radiances to a tristimulus space, such as
CIE XYZ. This is done by convolving each radiance

spectrum with the three standard CIE observer functions.
The second stage is to map each tristimulus value into our
target display’s color space. This process is called tone-
mapping, and depending on our goals and requirements, we
may take different approaches to arrive at different results.
Here are a few possible rendering intents:

1. Colorimetric intent: Attempt to reproduce the
exact color on the display, ignoring viewer
adaptation.1

2. Saturation intent: Maintain color saturation as far
as possible, allowing hue to drift.

3. Perceptual intent: Attempt to match perception of
color by remapping to display gamut and
viewer adaptation.

The rendering intents listed above have been put forth by the
ICC profile committee, and their exact meaning is
somewhat open to interpretation, especially for out-of-gamut
colors. Even for in-gamut colors, the perceptual intent,
which interests us most, may be approached in several
different ways. Here are a few possible techniques:

A. Shrink the source (visible) gamut to fit within the
display gamut, scaling uniformly about the
neutral line.

B. Same as A, except apply relative scaling so less
saturated colors are affected less than more
saturated ones. The extreme form of this is
gamut-clipping.

C. Scale colors on a curve determined by image
content, as in a global histogram adjustment.

D. Scale colors locally based on image spatial content,
as in Land’s retinex theory.

To any of the above, we may also add a white point
transformation and/or contrast adjustment to compensate for
a darker or brighter surround. In general, it is impossible to
reproduce exactly the desired observer stimulus unless the
source image contains no bright or saturated colors or the
display has an unusually wide gamut and dynamic range.2

Before we can explore any gamut-mapping techniques,
we need to know how to get from a spectral radiance value
to a tristimulus color such as XYZ or RGB. The
calculation is actually straightforward, but the literature on
this topic is vast and confusing, so we give an explicit
example to make sure we get it right.

Correct Color Rendering
Looking at the simplest case, spectral reflection of a small
light source from a diffuse surface in Eq. (1) reduces to the
following formula for outgoing radiance:

Ro() = d ()
E i()

(3)

1 The ICC Colorimetric intent is actually divided into relative
and absolute intents, but this distinction is irrelevant to our
discussion.
2 See www.hitl.washington.edu/research/vrd/ for information
on Virtual Retinal Display technology.

http://www.hitl.washington.edu/research/vrd/

where d() is the diffuse reflectance as a function of
wavelength, and Ei() is the spectral irradiance computed by
integrating radiance over the projected source. To convert
this to an absolute XYZ color, we apply the standard CIE
conversion, given below for SI units [16]:

X = 683 x ()R()d∫
Y = 683 y ()R()d∫
Z = 683 z () R() d∫

(4)

At this point, we may wish to convert to an opponent
color space for gamut-mapping, or we may wait until we are
in the device color space. If our tone-mapping is a simple
scale factor as described in technique A above, we may apply
it in any linear color space and the results will be the same.
If we convert first to a nonlinear device color space, we need
to be aware of the meaning of out-of-gamut colors in that
space before we map them back into the legal range of
display values. We demonstrate a consistent and reasonable
method, then compare to what is usually done in computer
graphics.

BlueFlower Example
To compute the absolute CIE color for a surface point, we
need to know the spectra of the source and the material.
Fig. 1 shows the source spectra for standard illuminant A
(2856K tungsten), illuminant B (simulated sunlight), and
illuminant D65 (6500K daylight). Fig. 2 shows the
reflected spectral radiance of the BlueFlower patch from the
MacBeth chart under each of these illuminants. To these
curves, we apply the CIE standard observer functions using
Eq. (4).

Source Spectra

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

5
9

0

6
0

0

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

6
7

0

6
8

0

6
9

0

7
0

0

7
1

0

7
2

0

Wavelength (nm)

Illum A

Illum B

Illum D65

Figure 1. Spectral power of three standard illuminants.

The resulting XYZ values for the three source conditions is
given in the first row of Table 1. Not surprisingly, there is
a large deviation in color under different illuminants,
especially tungsten. We can convert these colors to their
RGB equivalents using Eq. (5), as given in the second row
of Table 1. If we were to directly display the colors from the

illuminant A and B conditions on the screen, they would
likely appear incorrect because the viewer would be adapted
to the white point of the monitor rather than the white point
of the original scenes being rendered. If we assume the
scene white point is the same color as the illuminant and the
display white point is D65, then a white point adjustment is
necessary for the other illuminants (A and B), as given in
the third row of Table 1.

Reflected Spectra

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

5
9

0

6
0

0

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

6
7

0

6
8

0

6
9

0

7
0

0

7
1

0

7
2

0

Wavelength (nm)

Under A

Under B

Under D65

Figure 2. Spectral radiance of MacBeth BlueFlower patch under
three standard illuminants.

Source
CIE (x,y)

Illum D65
(.3127,.3290)

Illum B
(.3484,.3516)

Illum A
(.4475,.4075)

BlueFlower
CIE XYZ

0.274
0.248
0.456

0.280
0.248
0.356

0.302
0.248
0.145

709 RGB
(absolute)

0.279
0.219
0.447

0.349
0.209
0.341

0.525
0.179
0.119

709 RGB
(adjusted)

0.279
0.219
0.447

0.285
0.218
0.444

0.306
0.215
0.426

Table 1. Computed color values for BlueFlower under three
standard illuminants.

R

G

B















=C

X

Y

Z















C709 =
3.2410 −1.5374 −0.4986

−0.9692 1.8760 0.0416

0.0556 −0.2040 1.0570















(5)

We use a linear transform to adjust the white point from that
of the illuminant to that of the display, which we assume to
be D65 in this example. Eq. (5) gives the absolute
transformation from XYZ to CCIR-709 linear RGB, and

this is all we need for the D65 illuminant condition. For
the others, we apply the transformation shown in Eq. (6).

Eq. (6) is the linear von Kries adaptation model with
the CMCCAT2000 primary matrix [14], which does a
reasonable job of accounting for chromatic adaptation when
shifting from one dominant illuminant to another [15]. The
original white point primaries (Rw,Gw,Bw) are computed
from the illuminant XYZ using the MCMCCAT matrix, and the
destination primaries (Rw’,Gw’,Bw’) for D65 are computed
using the same transform to be (0.9478,1.0334,1.0850).

′ X

′ Y

′ Z















= M−1

′ R w Rw 0 0

0 ′ G w Gw 0

0 0 ′ B w Bw














M

X

Y

Z















Rw

Gw

Bw















= M

Xw

Yw

Zw















MCMCCAT =
0.7982 0.3389 −0.1371

−0.5918 1.5512 0.0406

0.0008 0.0239 0.9753















 (6)

The combined matrices for a white shift from standard
illuminants B and A to D65 (whose chromaticities are given
at the top of Table 1) and subsequent conversion from CIE
XYZ to CCIR-709 RGB color space, are given in Eq.(7) as
CB and CA. Matrix C709 from Eq. (5) was concatenated
with the matrix terms in Eq. (6) to arrive at these results,
which may be substituted for C709 in Eq. (5) to get the
adjusted RGB colors in the third row of Table 1 from the
absolute XYZ values in the first row.

CB =
3.1273 −1.6836 −0.4867

−0.9806 1.9476 0.0282

0.0605 −0.2036 1.3404















CA =
2.9355 −2.0416 −0.5116

−1.0247 2.1431 −.0500

0.0732 −0.1798 3.0895















(7)

Conventional CG Calculation
The standard approach in computer graphics color
calculations is to assume all light sources are perfectly white
and perform calculations in RGB color space. To display
the results, a linear scale factor may be applied to bring the
results into some reasonable range, and any values outside
the sRGB gamut will be clamped.

We obtain an RGB value for the BlueFlower material
from its published (x,y) chromaticity of (0.265,0.240) and
reflectance of 24.3%. These published values correspond to
viewing under standard illuminant C (simulated overcast),

which is slightly bluer than D65. The linear RGB color for
the flower material using the matrix C709 from Eq. (5) is
(0.246,0.217,0.495), which differs from the D65 results in
Table 1 by 10 ∆E* units using the CIE L*uv perceptual
metric [16]. Most of this difference is due to the incorrect
scene illuminant assumption, since the ∆E* between
illuminant C and D65 is also around 10. This demonstrates
the inherent sensitivity of color calculations to source color.
Using the color corresponding to the correct illuminant is
therefore very important.

The reason CG lighters usually treat sources as white is
to avoid the whole white balancing issue. As evident from
the third row in Table 1, careful accounting of the light
source and chromatic adaptation is almost a no-op in the
end. For white points close to the viewing condition of
D65, the difference is small: a difference of just 1 ∆E* for
illuminant B. However, tungsten is very far from daylight,
and the ∆E* for illuminant A is more than 5, which is
definitely visible. Clearly, if we include the source
spectrum, we need to include chromatic adaptation in our
tone-mapping. Otherwise, the differences will be very
visible indeed -- a ∆E* of 22 for illuminant B and nearly 80
for illuminant A!

What if we include the source color, but use an RGB
approximation instead of the full spectral rendering? Errors
will creep in from the reduced spectral resolution, and their
significance will depend on the source and reflectance
spectra. Computing everything in CCIR-709 RGB for our
BlueFlower example, the ∆E* from the correct result is 1
for illuminant B and nearly 8 for illuminant A. These
errors are at least as large as ignoring the source color
entirely, so there seems to be little benefit in this approach.

Relative Color Approximation
An improved method that works well for scenes with a
single dominant illuminant is to compute the absolute RGB
color of each material under the illuminant using a spectral
precalculation from Eqs. (3) and (4). The source itself is
modeled as pure white (Y,Y,Y) in the scene, and sources
with a different color are modeled relative to this illuminant
as (Rs/Rw,Gs/Gw,Bs/Bw), where (Rw,Gw,Bw) is the RGB
value of the dominant illuminant and (Rs ,Gs,Bs) is the color
of the other source. In our example, the RGB color of the
BlueFlower material under the three standard illuminants are
those given in the second row of Table 1.

Prior to display, the von Kries chromatic adaptation in
Eq. (5) is applied to the image pixels using the dominant
source and display illuminants. The incremental cost of our
approximation is therefore a single transform on top of the
conventional CG rendering, and the error is zero by
construction for direct reflection from a single source type.
There may be errors associated with sources having different
colors and multiple reflections, but these will be negligible
in most scenes. Best of all, no software change is required –
we need only precalculate the correct RGB values for our
sources and surfaces, and the rest comes for free.

It is even possible to save the cost of the final von
Kries transform by incorporating it into the precalculation,

computing adjusted rather than absolute RGB values for the
materials, as in Eq. (7). We would prefer to keep this
transform separate to preserve the colorimetric nature of the
rendered image, but as a practical matter, it is often
necessary to record a white-balanced image, anyway. As
long as we record the scene white point in an image format
that preserves the full gamut and dynamic range of our
tristimulus pixels, we insure our ability to correctly display
the rendering in any device’s color space, now and in the
future.

High Dynamic Range Images
Real scenes and physically-based renderings of real scenes do
not generally fit within a conventional display’s gamut
using any reasonable exposure value (i.e., scale factor). If
we compress or remap the colors to fit an sRGB or similar
gamut, we lose the ability to later adjust the tone-scale or
show off the image on a device with a larger gamut or wider
dynamic range. What we need is a truly device-independent
image representation, which doesn’t take up too much space,
and delivers superior image quality whatever the destination.
Fortunately, such formats exist.

Since its inception in 1985, the Radiance physically-
based renderer has employed a 32-bit/pixel RGBE (Red-
Green-Blue-Exponent) format to store its high dynamic
range output [17]. Predating Radiance, Bill Reeves of
Pixar created a 33-bit log RGB format for the REYES
rendering system, and this format has a public version
contributed by Dan McCoy in 1996 to Sam Leffler’s free
TIFF library (www.libtiff.org). While working at SGI, the
author added to the same TIFF library a LogLuv format that
captures 5 orders of magnitude and the full visible gamut in
24 bits using a perceptual color encoding [18]. The 32-bit
version of this format holds up to 38 orders of magnitude,
and often results in smaller files due to run-length encoding
[19]. Both LogLuv formats combine a logarithmic encoding
of luminance with a linear encoding of CIE (u’,v’)
chromaticity to cover the full visible gamut as opposed to
the gamut of a specific device or medium.

Of the formats mentioned, only SGI’s LogLuv TIFF
encoding covers the full gamut and dynamic range of
perceivable colors. The Radiance RGBE format spans a
large dynamic range but is restricted to positive RGB values,
so there are visible chromaticities it cannot represent. There
is an XYZE version of the same format, but the associated
quantization errors make it a poor choice. The Pixar 33-bit
log format also has a restricted RGB gamut and only covers
3.8 orders of magnitude, which is marginal for human
perception. Since the TIFF library is well tested and free,
there is really no reason not to use LogLuv, and many
rendering packages now output in this format. Even
shareware browsers such as ACDSee are able to read and
display LogLuv TIFF’s.

Gamut Mapping
In order to fit a high dynamic range image into the limited
color space of a conventional display, we need to apply one

of the gamut compression techniques mentioned at the
beginning of this section.

Figure 3. Radiance rendering of control tower clamped to
limited display gamut and dynamic range.

Figure 4. The same rendering displayed using a visibility-
preserving tone operator including glare effects.

Figure 5. A tone operator designed to optimize print contrast.

http://www.libtiff.org/

Specifically, we show how one might apply the third
approach to display an image:

C. Scale colors on a curve determined by image
content, as in a global histogram adjustment.

We assume that the rendering system has calculated the
correct color at each pixel and stored the result in a high
dynamic-range image format. Our task is then to examine
this image and choose an appropriate mapping to our
display. This is a difficult process to automate, and there is
no guarantee we will achieve a satisfactory result in all
cases. The best we can do is codify a specific set of goals
and requirements and optimize our tone-mapping
accordingly.

One possible goal of physically-based rendering is to
assess visibility in some hypothetical environment or
situation, or to recreate a situation that is no longer readily
available (e.g., a plane crash). In such cases, we want to say
that anything visible to an observer in the actual scene will
be visible on the tone-mapped display. Conversely, if
something is not visible on the display, we want to say that
it would not be visible to an observer in the actual scene.
This kind of visibility-matching operator was described in
[20], and we show the result in Fig. 4. Fig. 3 shows the
image mapped to an sRGB gamut using technique B to
desaturate out-of-gamut colors. As we can see, some of the
detail in the planes outside the window was lost to
clamping, where it is preserved in the visibility-matching
histogram-adjustment procedure in Fig. 4. An optional
feature of our tone operator is the ability to simulate
disability glare, which reduces visible contrast due to the
harsh backlighting in the tower environment. This is
visible as a slight haze in front of the monitors in Fig. 4.

Fig. 5 demonstrates another type of tone operator.
This is also a histogram adjustment method, but instead of
attempting to reproduce visibility, this operator seeks to
optimize contrast over the entire image while keeping colors
within the printable gamut. Especially in digital photo
printers, saturated colors may be difficult to reproduce, so it
may be desirable to darken an image to avoid desaturating
some regions. We see that this method produces good
contrast over most of the image.

Fig. 6 shows the global mapping of these three
operators from world (rendered) luminance to display value
(fraction of maximum). Where the naive linear operator
clamps a lot of information off the top end, the two
histogram adjustment operators present this information at a
reduced contrast. This compression is necessary in order to
bring out detail in the darker regions. We can see that the
slopes match the linear operator near black in Fig. 7,
deviating from the linear clamping operator above a certain
level, where compression begins.

Fig. 8 plots the contrast optimizing tone operator
against the world luminance distribution. Peaks in the
luminance histogram correspond to increases in contrast,
visible in the tone-mapping as a slight increase in slope.
Since this is a log-log luminance plot, a small change in
slope corresponds to a large change in contrast. The dip
between 1.5 and 2.0 corresponds to a more gradual slope in

the tone-mapping and lower contrast. In the low end, we see
that this operator tends to provide more contrast to
compensate for veiling reflection typical of glossy prints.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 1000 2000 3000 4000 5000 6000 7000 8000

World Luminance

D
is

p
la

y
 Y

vis-match

contrast

clamped

Figure 6. Comparison between three tone-mapping operators.

0.00

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200 250 300 350 400 450

World Luminance

D
is

p
la

y
 Y

vis-match

contrast

clamped

Figure 7. Close-up on darker region of tone-mappings.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Log10 Word Luminance

Log DispY

Freq

Figure 8. Good global tone operators produce greater contrast at
peaks in the input histogram.

Conclusion

The recommendations we make in this paper for accurate
color rendering may be summarized as follows:

1. Use a global illumination method with appropriate
solutions for all of the phenomena being simulated.

2. Follow accurate spectral calculations with a good
chromatic adaptation model to avoid color casts in
the displayed image.

3. Substitute full spectral rendering with a relative
color approximation for scenes with a single
dominant illuminant.

4. Record images in a high dynamic range format to
preserve display options (i.e., SGI LogLuv TIFF).

5. Base tone-mapping and gamut-mapping operators
on specific goals, such as matching visibility or
optimizing color or contrast.

Floating-point spectral calculations and high dynamic-range
image manipulation are critical to accurate color rendering.
The original approach of rendering directly in 24-bit RGB
was recognized as hopeless and abandoned decades ago, but
much of the mentality behind it remains with us today.

The methods outlined in this paper are not particularly
expensive, neither in terms of implementation effort nor
rendering cost. It’s simply a matter of applying the right
approximation. The author is not aware of any commercial
software package that follows more than one or two of these
principles, and it seems like a question of priorities.

Most of the money in rendering is spent by the
entertainment industry, either in movies or in games. Little
emphasis has been placed on accurate color rendering, but
with the recent increase in mixed-reality rendering, this is
beginning to change. Mixed-reality special effects and
games require rendered imagery to blend seamlessly with
film or live footage. Since reality follows physics and color
science, rendering software will have to do likewise. Those
of us whose livelihood depends on predictive rendering and
accurate color stand to benefit from this shift.

References

1. Michael Stokes, Matthew Anderson, Srinivasan
Chandrasekar, Ricardo Motta, A Standard Default Color
Space for the Internet, www.w3.org/Graphics/Color/sRGB

2. Greg Ward, The RADIANCE Lighting Simulation and
Rendering System, Computer Graphics (Proceedings of
SIGGRAPH 94), ACM, 1994.

3. Paul Debevec, Jitendra Malik, Recovering High Dynamic
Range Radiance Maps from Photographs, Computer
Graphics (Proceedings of SIGGRAPH 97), ACM, 1997.

4. Alexander Wilkie, Robert Tobler, Werner Purgathofer,
Combined Rendering of Polarization and Fluorescence
Effects, Proceedings of 12 th Eurographics Workshop on
Rendering, June 2001.

5. Henrik Wann Jensen, Stephen Marschner, Marc Levoy, Pat
Hanrahan, A Practical Model for Subsurface Light

Transport, Computer Graphics (Proceedings of SIGGRAPH
01), ACM, 2001.

6. Xiaodong He, Ken Torrance, François Sillion, Don
Greenberg, A Comprehensive Physical Model for Light
Reflection, Computer Graphics (Proceedings of SIGGRAPH
91), ACM, 1991.

7. Jay Gondek, Gary Meyer, Jon Newman, Wavelength
Dependent Reflectance Functions, Computer Graphics
(Proceedings of SIGGRAPH 94), ACM, 1994.

8. Holly Rushmeier, Ken Torrance, The Zonal Method for
Calculating Light Intensities in the Presence of a
Participating Medium, Computer Graphics (Proceedings of
SIGGRAPH 87), ACM, 1987.

9. Henrik Wann Jensen, Efficient Simulation of Light
Transport in Scenes with Participating Media using Photon
Maps, Computer Graphics (Proceedings of SIGGRAPH 98),
ACM, 1998.

10. Jim Kajiya, The Rendering Equation, Computer Graphics
(Proceedings of SIGGRAPH 86), ACM, 1986.

11. Greg Ward Larson, Rob Shakespeare, Rendering with
Radiance, Morgan Kaufmann Publishers, 1997.

12. Henrik Wann Jensen, Realistic Image Synthesis Using
Photon Mapping, A.K. Peters Ltd., 2001.

13. Francois Sillion, Claude Puech, Radiosity and Global
Illumination, Morgan Kaufmann Publishers, 1994.

14. C. Li, M.R. Luo, B. Rigg, Simplification of the
CMCCAT97, Proc. IS&T/SID 8 th Color Imaging
Conference, November 2000.

15. Sabine Süsstrunk, Jack Holm, Graham Finlayson,
Chromatic Adaptation Performance of Different RGB
Sensors, IS&T/SPIE Electronic Imaging, SPIE Vol. 4300,
January 2001.

16. Günter Wyszecki, W.S. Stiles, Color Science, J. Wiley,
1982.

17. Greg Ward, Real Pixels, Graphics Gems II, edited by James
Arvo, Academic Press, 1992.

18. Greg Ward Larson, Overcoming Gamut and Dynamic Range
Limitations in Digital Images, IS&T/SID 6th Color Imaging
Conference, November 1998.

19. Greg Ward Larson, The LogLuv Encoding for Full Gamut,
High Dynamic Range Images, Journal of Graphics Tools,
3(1):15-31 1998.

20. Greg Ward Larson, Holly Rushmeier, Christine Piatko, A
Visibility Matching Tone Reproduction Operator for High
Dynamic Range Scenes, IEEE Transactions on
Visualization and Computer Graphics, Vol. 3, No. 4,
December 1997.

Biography

Greg Ward (a.k.a. Greg Ward Larson) graduated in Physics
from UC Berkeley in 1983 and earned a Master’s in
Computer Science from SF State University in 1985. Since
1985, he has worked in the field of light measurement,
simulation, and rendering variously at the Berkeley National
Lab, EPFL Switzerland, Silicon Graphics Inc., Shutterfly,
and Exponent. He is author of the widely used Radiance
package for lighting simulation and rendering.

http://www.w3.org/Graphics/Color/sRGB
http://viz.cs.berkeley.edu/~gwlarson/

	Abstract
	Introduction
	The Spectral Rendering Equation
	Participating Media
	Solving the Rendering Equation

	Tone Mapping
	Correct Color Rendering
	BlueFlower Example
	Conventional CG Calculation
	Relative Color Approximation
	High Dynamic Range Images
	Gamut Mapping

	Conclusion
	References
	Biography

